Collective coordinate variable for soliton-potential system in sine-Gordon model
نویسندگان
چکیده
منابع مشابه
Collective coordinates theory for discrete soliton ratchets in the sine-Gordon model.
A collective coordinate theory is developed for soliton ratchets in the damped discrete sine-Gordon model driven by a biharmonic force. An ansatz with two collective coordinates, namely the center and the width of the soliton, is assumed as an approximated solution of the discrete nonlinear equation. The dynamical equations of these two collective coordinates, obtained by means of the generaliz...
متن کاملSoliton stability in a generalized sine-Gordon potential
We study stability of a generalized sine-Gordon model with two coupled scalar fields in two dimensions. Topological soliton solutions are found from the first-order equations that solve the equations of motion. The perturbation equations can be cast in terms of a Schrödinger-like operators for fluctuations and their spectra are calculated. PACS numbers: 0.350.-z, 11.10.Ef
متن کامل, mKdV , SINE - GORDON SOLITON EQUATIONS
A bi-Hamiltonian hierarchy of complex vector soliton equations is derived from geometric flows of non-stretching curves in the Lie groups G = SO(N + 1), SU(N) ⊂ U(N), generalizing previous work on integrable curve flows in Riemannian symmetric spaces G/SO(N). The derivation uses a parallel frame and connection along the curves, involving the Klein geometry of the group G. This is shown to yield...
متن کاملRegularization of multi-soliton form factors in sine-Gordon model
A general and systematic regularization is developed for the exact solitonic form factors of exponential operators in the (1+1)-dimensional sine-Gordon model by analytical continuation of their integral representations. The procedure is implemented in Mathematica. Test results are shown for fourand six-soliton form factors.
متن کاملSoliton evolution and radiation loss for the sine-Gordon equation.
An approximate method for describing the evolution of solitonlike initial conditions to solitons for the sine-Gordon equation is developed. This method is based on using a solitonlike pulse with variable parameters in an averaged Lagrangian for the sine-Gordon equation. This averaged Lagrangian is then used to determine ordinary differential equations governing the evolution of the pulse parame...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Physics
سال: 2010
ISSN: 0022-2488,1089-7658
DOI: 10.1063/1.3511337